
An Analysis of NIC Resource Usage for Offloading MPI

Ron Brightwell Keith D. Underwood
Sandia National Laboratories

�
PO Box 5800

Albuquerque, NM 87185-1110�
rbbrigh, kdunder � @sandia.gov

Abstract

Modern cluster interconnection networks rely on pro-
cessing on the network interface to deliver higher band-
width and lower latency than what could be achieved oth-
erwise. These processors are relatively slow, but they pro-
vide adequate capabilities to accelerate some portion of the
protocol stack in a cluster computing environment. This of-
fload capability is conceptually appealing, but the standard
evaluation of NIC-based protocol implementations relies on
simplistic microbenchmarks that create idealized usage sce-
narios. In this paper, we evaluate characteristics of MPI us-
age scenarios using application benchmarks to help define
the parameter space that protocol offload implementations
should target. Specifically, we analyze characteristics that
we expect to have an impact on NIC resource allocation
and management strategies, including the length of the MPI
posted receive and unexpected message queues, the number
of entries in these queues that are examined for a typical
operation, and the number of unexpected and expected mes-
sages.

1. Introduction

A large number of modern cluster computers leverage
high performance network interfaces that include a pro-
grammable processor. These range from low-end Giga-
bit Ethernet cards with 88 MHz processors to Myrinet [3]
and Quadrics [19] cards with much more computing power.
NIC processors have been touted as an opportunity to sig-
nificantly improve MPI processing (ranging from simple
protocol offload to offloading large portions of the MPI
stack) for cluster computers. Indeed, eliminating the PCI
bus from much of the MPI processing path has significant
advantages. Numerous microbenchmarks have been used to

�
Sandia is a multiprogram laboratory operated by Sandia Corporation,

a Lockheed Martin Company, for the United States Department of Energy
under contract DE-AC04-94AL85000.

illustrate the improvements in bandwidth and latency that
can be achieved; thus, aggressive supercomputer designs
such as Red Storm[1] have chosen to effectively offload
most of the MPI matching semantics by using Portals[5].
It should be expected that with the growth in silicon area
available to NICs that even more of the MPI stack will be
absorbed; however, NIC-based programmable processors
are currently much slower than their host processor counter-
parts. With the limited power budgets typically available to
the NIC, this trend is expected to continue. The impacts of
this disparity are not obvious in standard microbenchmarks
and the implications can be significant.

One of the problems with standard microbenchmarks is
that they only evaluate networks under idealized usage sce-
narios. Typically, latency is only evaluated with one item in
the posted receive queue, and bandwidth is measured only
with pre-posted receives. Real applications have multiple
items in the MPI posted receive queue and searching the
posted receive queue for a match increases latency. Sim-
ilarly, real applications have unexpected messages that can
impact MPI performance in various ways. These effects can
be exaggerated when portions of the protocol are offloaded
onto a relatively slow NIC processor.

Surprisingly, there have been no studies of the parame-
ter space that real applications create. Designers of NIC of-
fload engines target improved bandwidth and latency in ide-
alized scenarios because full application benchmarks tend
to obscure the magnitude of improvements their efforts have
yielded. A doubling of bandwidth is much more impressive
than the corresponding 5% improvement in application ex-
ecution time it might produce.

This work seeks to fill a critical gap in the understanding
of the way applications use the network. A variety of data
was collected from the NAS Parallel Benchmark suite[2]
including:

� the length of the MPI posted receive queue

� the length of the MPI unexpected message queue

� the number of entries in each queue that are examined
for a typical operation

� the percentage of expected and unexpected messages

This data can have a significant impact on the resources that
are needed on a NIC, the way those resources are managed,
and the portion of the MPI stack that should be offloaded.
We believe this type of data can be used in numerous ways.
For example. it can be useful to the networking commu-
nity to help in designing new network interfaces, develop-
ing new protocol processing strategies, and implementing
new benchmarks to measure the performance of the net-
work under realistic loads. It may also be important from
a performance analysis standpoint, as a significant number
of unexpected messages my indicate an opportunity for in-
creasing message passing performance.

The rest of this paper is organized as follows. The next
section describes the motivations for this work in more de-
tail. Section 3 discusses how this work relates to other pub-
lished research. Following that, Section 4 discusses our ap-
proach for the measurements taken and Section 5 describes
the test system and benchmarks. Measurements from the
test system are presented in Section 6 followed by conclu-
sions in Section 7 and future work in Section 8.

2. Motivation

Relative to host processors, network interface processors
are slow, but their proximity to the network makes them ad-
equate to accelerate some portion of the protocol stack in
a cluster computing environment. The advantages of this
form of offloading have been well established. In previ-
ous work, we have presented arguments for pushing more
protocol information onto the network interface in order to
better support upper-level transport protocols, and we have
presented an architecture that provides the basic building
blocks for constructing protocols for many different higher-
level programming interfaces[5].

However, there are several fundamental issues that can
impact the amount of protocol processing that is appro-
priate for offload. Most of these issues are related to the
amount of resources that are needed from the network in-
terface and how those resources are managed. For ex-
ample, the Quadrics Tports interface and the Myricom
MX interface[18] are all designed to support some sort of
tagged message selection processing by the network inter-
face. These interfaces have chosen to enable offloading of
a portion of the MPI matching semantics because the ex-
tra processing resources required for tag matching on the
network interface can provide a significant performance in-
crease compared to performing tag matching using the host
processor — provided there are sufficient NIC processing

cycles available. The Portals interface that we have pro-
posed allows for offloading message selection capability,
but also provides a much richer set of semantics that require
processing as well as memory resources.

Currently, the amount of NIC resources that can be used
for protocol processing are scarce relative to resources on
the host. We believe that as networks increase in perfor-
mance and the bottleneck between the host processor and
the network processor is eliminated (or significantly re-
duced), a richer set of network processing semantics will
be required to deliver raw network performance to applica-
tions. However, this ability to deliver performance will de-
pend on having the appropriate allocation and management
strategies for network resources.

For example, the Portals interface supports an implemen-
tation of MPI where the posted receive queue and unex-
pected queue exist in NIC memory. When a message comes
into the NIC, the posted receive queue is traversed and the
message is deposited directly into user memory. If the re-
ceive was pre-posted, the message is delivered directly into
the appropriate user-supplied buffer. If the message was un-
expected, it is delivered into a user-level buffer provided by
the MPI library. We believe this approach can offer a sig-
nificant performance improvement compared to MPI imple-
mentations where these queues are managed on the host by
the MPI user-level library. However, the limited resource
environment of most network interfaces prohibits us from
traversing an extremely long posted receive queue, either
because this prevents the NIC processor from other duties
or because NIC memory is not large enough to hold an arbi-
trarily long queue. In this case, the appropriate strategy for
managing these NIC resources is largely dependent on the
behavior of the MPI application. This paper analyzes ap-
plication benchmarks in an attempt to provide much needed
data to answer questions about how NIC resources should
be managed and how much processing capability might be
needed on the NIC.

3. Related Work

There is a significant amount of work in the area of par-
allel application performance analysis. However, we know
of no work that collects, analyzes, or uses MPI unexpected
messages or MPI queue information as a basis to character-
ize performance and scalability. Most performance analy-
sis tools for MPI use the MPI profiling interface to gather
message tracing and timing information. Since unexpected
messages are not exposed in the MPI programming inter-
face, this information is not available to the profiling layer.
Many of the issues with unexpected messages that we are
analyzing in this paper have motivated work on a portable
interface for exposing low-level MPI implementation de-
tails, such as unexpected messages, to application develop-

2

ers and performance tool developers. This interface, called
PERUSE [10], is currently being explored by a number of
organizations in the MPI research community. This work
emphasizes the need to be able to capture low-level MPI
performance information to assist in characterizing applica-
tion message passing requirements. We have also tried to
motivate this need with respect to unexpected messages in
previous work [4, ?].

In addition to performance analysis, there is also a signif-
icant amount of work that characterizes the message passing
behavior of applications and application benchmarks in an
attempt to understand or predict how well they will scale.
Example of this type of analysis can be found in [29] and
[30]. As with performance tools, this analysis does not con-
sider the impact or effect of unexpected messages or queue
lengths, largely because this information is not easily attain-
able.

A variety of research efforts have studied the use of NIC
processors to accelerate protocol processing[23, 24, 25] or
have added hardware to support protocol processing[8, 17,
21, 22]. In general, these efforts have demonstrated im-
provements in achievable latency and bandwidth. How-
ever, with particularly slow embedded processors, it is al-
ready clear that insufficient processing power is available
to fully support the network bandwidth[24]. Other pro-
tocol processing efforts outside of cluster computing have
used promising new network processors such as the Intel
IXP1200 and IXP2800[15, 11, 26] that have significantly
more processing power, but are still resource constrained.

Some efforts have studied protocols that offload a por-
tion of the MPI matching semantics. For example, in [16]
portions of a Portals[5] stack were offloaded. Similarly,
the Quadrics network[19] offloads the MPI matching stack
onto the network interface, and others have explored this
approach for Myrinet [28]. A new software stack from
Myricom for Myrinet, called MX [18], appears to do this
as well. A continuing challenge for such implementations
is the relatively slow speed of the NIC processor. When
the posted receive queue is short, such as with a ping-pong
benchmark, dramatic latency reductions are seen; however,
longer posted receive queues could lead to significant per-
formance degradation.

Other efforts have considered absorbing other portions of
the MPI stack. A particularly common option is to offload a
portion of the MPI collective operations[14, 6, 27, 7]. Even
with relative simple collective operations, limited CPU per-
formance can be constraining.

The logical extension of previous work will be embed-
ded network processors that absorb greater portions of MPI.
However, none of the efforts thus far have presented stud-
ies with respect to the requirements of real applications for
such implementations. For these efforts to be successful
outside of the research laboratory, it will be necessary for

them to address real application usage scenarios. This pa-
per provides some of the data that will be needed to properly
design such MPI offload engines.

4. Approach

The MPICH [13] implementation has an abstract device
interface (ADI) [12] that provides a network transport layer
with the functions necessary to implement MPI semantics.
In particular, the posted receive queue and unexpected mes-
sage queue are linked lists that are managed within the ADI
code. These linked lists are not usually manipulated by the
underlying transport layer directly. The ADI abstracts the
implementation of these queues away from the transport
layer.

For example, the ADI provides a function call,
MPID Msg arrived(), for the transport layer to use to
signify the arrival of a new message. This function traverses
the posted receive queue to see if there is already a match-
ing receive posted. If there is, it removes the entry from
the queue and proceeds. If not, it enqueues information
about the new message in the unexpected queue. In order
to keep track of the average number of times the posted re-
ceive queue is searched, we increment a counter each time
MPID Msg arrived() is called. Inside this function, we
increment another counter each time a queue entry is in-
spected.

The unexpected queue must be searched each time
an MPI receive is posted. The MPICH ADI function,
MPID Search unexpected queue and post(),
searches through the unexpected queue looking for a
matching message. If no match is found, the receive is
added to the posted receive queue. If a match is found,
the unexpected message is dequeued and the receive
is processed. This function actually calls another ADI
function that searches the unexpected queue. We simply
increment a counter each time this function is called, and
increment another counter each time an unexpected queue
entry is inspected.

We also used this function to keep track of the number
of unexpected and expected messages. We traced the ADI
code to find all of the places where this function is called,
and incremented a counter for each type of message. In or-
der to have more detail about short versus long messages,
we traced the code further down into the device-specific
transport layer (ch gm) and inserted counters there.

We also instrumented the queue management utility
functions in the MPICH ADI to keep track of maximum
queue length. Each time an entry is enqueued, we incre-
ment a length counter associated with the queue. Likewise,
this counter is decremented each time an entry is dequeued.
Each time a new entry is enqueued to the posted receive or
unexpected message queue, we inspect the length counter

3

to maintain its maximum value.
In order to allow applications to access these counters

and maximum values, they were implemented as global
variables. This approach allows them to be initialized with-
out an explicit function call and allows them to be exported
to the application easily. The MPICH ADI is not multi-
threaded, so the global values are only manipulated by a
single thread of execution.

We used the MPI profiling interface to collect the
data and write it out to a file. We defined our own
MPI Finalize() routine that records the values and then
gathers them to rank 0, which simply opens a text file and
writes them out for each rank. This way, we do not need to
modify applications at all. We simply re-link the code with
the profiling code and the instrumented MPI library.

The overhead of instrumenting MPICH this way is negli-
gible. The additional computation and logic needed for this
instrumentation is insignificant, especially for unexpected
messages, which are already in the low performance path.
For a posted message, the computation and logic operations
are performed after the message has been received, so the
additional computation does not impact the transfer of the
data.

In order to reduce variability, we ran each test four times
and report the average over all of the runs. Each run was
also made on the same set of compute nodes for each of the
different processor counts.

5. Platform and Benchmarks

All of our tests were run on the Vplant machine at San-
dia National Laboratories. Vplant is a large Linux cluster
with approximately 320 compute nodes composed of Intel
Pentium-3 and Pentium-4 processors. All of our experi-
ments were run on nodes containing dual Pentium-4 Xeon
processors running at 2.0 GHz. Each node has 1 GB of main
memory and a Myrinet-2000 [3] network interface. The
nodes are connected in a Clos topology. Vplant was running
a Linux 2.4.18 kernel, GM version 1.6.4, and MPICH/GM
version 1.2.4..8. All of our runs used only one process per
node.

For this initial analysis, we chose the NAS Parallel
Benchmarks (NPB) version 2.4 [9] class B. These bench-
marks are a collection of MPI applications that are distilled
from real computational fluid dynamics applications. Ex-
cept for EP, they all exhibit particular message passing and
computation patterns that stress different parts of the sys-
tem. We omitted the EP benchmark from our study, since it
does virtually no message passing. These benchmarks have
been well-studied, but we have seen no data that charac-
terizes their performance or behavior with respect to unex-
pected messages or MPI queues.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BT SP BT SP BT SP BT SP

16 36 64 121

Number of Nodes

M
es

sa
ge

 B
re

ak
do

w
n

Long Expected
Short Expected
Long Unexpected
Short Unexpected

Figure 1. Message Breakdown for BT and SP

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CG FT CG FT CG FT CG FT

16 32 64 128

Number of Nodes

M
es

sa
ge

 B
re

ak
do

w
n

Long Expected
Short Expected
Long Unexpected
Short Unexpected

Figure 2. Message Breakdown for CG and FT

6. Results

6.1. Unexpected Messages

Unexpected messages can cause a significant amount of
performance degradation for MPI. They are considered to
be the “slow path”. However, Figures 1, 2, and 3 clearly in-
dicate that a significant portion of the messages received by
the NPB benchmarks are unexpected. Of all of the bench-
marks, only MG has a relatively small number of unex-
pected messages.

The trends in Figures 1, 2, and 3 do not show any particu-
lar increase in the percentage of unexpected messages as the
number of nodes is scaled. The ratio between short and long
messages, however, does increase since the benchmarks use
a fixed problem size. In the end, the overriding message is

4

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

IS LU MG IS LU MG IS LU MG IS LU MG

16 32 64 128

Number of Nodes

M
es

sa
ge

 B
re

ak
do

w
n

Long Expected
Short Expected
Long Unexpected
Short Unexpected

Figure 3. Message Breakdown for IS, LU and
MG

that NICs that hope to offload a significant portion of MPI
must deal with unexpected messages on a regular basis.

6.2. Queue Lengths

One of the greatest limitations of most modern NIC hard-
ware is the extremely limited amount of memory on the
card. As such, the maximum length of the posted receive
queue and the unexpected message queue have significant
implications for the feasibility of message offload. Figure 4
indicates that, for small numbers of processors, the maxi-
mum length of the posted receive queue is well within the
limits of the memory that a modern NIC would support;
however, the number of posted receives appears to grow lin-
early with the number of processors for both the IS and FT
benchmarks. This has the potential to be a major limiting
factor in the scalability of the offload of the MPI match-
ing semantics. Although several of the benchmarks show
flat scaling of the number of posted receives and a very
short typical posted receive queue, an offload implementa-
tion must work and perform reasonably for all codes.

Similarly, Figure 5 indicates that FT, IS, and LU bench-
marks all have a large maximum length for the unexpected
message queue. As with the posted receive queue, the max-
imum length for this queue grows with the number of pro-
cessors. Current implementations of unexpected messages
typically use a threshold between “short”, eagerly sent mes-
sages that are buffered at the receiver if they are unexpected
and “long”, rendezvous messages that are not buffered at the
receiver. The current default threshold for GM on Myrinet,
for example, is 16 KB (minus a small amount of header).
At 10,000 nodes with a 16 KB threshold, a linear increase

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

E
nt

rie
s

Number of Processors

BT
CG
FT
IS

LU
MG
SP

Figure 4. Maximum Length of the Posted Re-
ceive Queue

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 20 40 60 80 100 120 140

E
nt

rie
s

Number of Processors

BT
CG
FT
IS

LU
MG
SP

Figure 5. Maximum Length of the Unexpected
Message Queue

in the maximum size of the unexpected queue would imply
that 160 MB of memory was needed for buffering. In the
worst case, a NIC that offloads unexpected message han-
dling would need a mechanism to buffer this much data
somewhere.

The current trends in networking are a second aspect to
consider with respect to unexpected message offloading. At
the high end, network bandwidth is improving faster than
network latency. Since the optimal threshold increases with
the bandwidth delay product, this implies that the threshold
between short and long messages will increase. This will
increase the amount of buffering an unexpected message of-
fload will need to do to obtain maximum performance.

5

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

E
nt

rie
s

Number of Processors

BT
CG
FT
IS

LU
MG
SP

Figure 6. Maximum Search Length of the
Posted Receive Queue

6.3. Search Length

The search length of a queue is the number of queue en-
tries that are traversed in a given search. While long queues
have implications for the amount of memory required for
a NIC offload implementation, the portion of those queues
that are searched has a significant impact on the processing
power needed on the NIC. It also affects the real latency
seen by applications.

Maximum Search Length. The maximum search length
is the largest number of queue entries that are traversed in
any of the queue searches. Although the maximum search
length can vary between application runs, the maximum
search length over several application runs places an upper
bound on the number of queue entries that are likely to be
traversed. This frees an MPI offload designer to optimize to
this likely upper bound.

Unfortunately, Figure 6 indicates that the maximum
search length of the posted receive queue is equivalent to
the length of the posted receive queue. This would seem-
ingly prohibit, for example, an offload of the MPI matching
semantics that chose to buffer a small portion of the posted
receive queue in NIC memory and then walk the remainder
of the queue by accessing host memory from the NIC.

When comparing this to Figure 8, it is also clear that
there is a large difference between the average case and the
worst case. This will inevitably introduce variability into
the execution time of a time step (the time between synchro-
nization points). This type of variability is the key symptom
of the “rogue OS effect”[20], which leads to significantly
longer applications execution times. This type of variabil-
ity will also prove to be one of the major limiting factors in
scaling from 10,000 to 100,000 nodes.

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120 140

E
nt

rie
s

Number of Processors

BT
CG
FT
IS

LU
MG
SP

Figure 7. Maximum Search Length of the Un-
expected Message Queue

Figure 7 indicates that applications are slightly less likely
to traverse the entire unexpected message queue. They do,
however, still traverse a significant portion of the unex-
pected message queue. A comparison between Figure 7 and
Figure 9 indicates a dramatic difference in the maximum
and average portions of the unexpected message queue that
are traversed. Thus, the unexpected message queue can be
an even larger contributor to the variability in application
execution time than the posted receive queue.

Average Search Length. The average search length is the
average number of queue entries that are inspected when
the queue is searched. The average search length is impor-
tant since it can significantly affect the average latency that
a process sees. If the average search length is long and the
average message is short, average search length can have
a detrimental effect on bandwidth. Both long searches of
the posted receive queue and long searches of the unex-
pected message queue can have detrimental effects on the
real latency an application experiences. The former slows
down message reception and the latter slows down message
posting. Because NIC processors are typically an order of
magnitude slower than host processors, this effect (relative
to the latency of the physical network layer) is exaggerated
when MPI offload implementations are performed.

Figure 8 indicates that the average number of entries in-
spected for IS and FT grow almost linearly with the number
of processors. This is not surprising since the maximum
queue length grows linearly in the number of processors
and the percentage of unexpected messages remains con-
stant. Unexpected messages are guaranteed to traverse the
entire posted receive queue. This data explains results in
[28], which indicate that the performance advantage of MPI
offload decreases as the number of processors increases. In-

6

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140

A
ve

ra
ge

 E
nt

rie
s

S
ea

rc
he

d

Number of Processors

BT
CG
FT
IS

LU
MG
SP

Figure 8. Average Search Length of the
Posted Receive Queue

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140

A
ve

ra
ge

 E
nt

rie
s

S
ea

rc
he

d

Number of Processors

BT
CG
FT
IS

LU
MG
SP

Figure 9. Average Search Length of the Unex-
pected Message Queue

deed, as the number of processors increases, the offload im-
plementation loses to the processor implementation.

The average search length for the unexpected queue is
relatively short for all applications except FT. For FT, the
search length grows linearly with the number of processors.
In general, this is good news for NIC designs that seek to of-
fload more of the MPI layer; however, NIC offload engines
must still be aware of the subset of codes that must search
significant portions unexpected message queue.

7. Conclusions

The results presented clearly indicate that the usage of
MPI resources varies dramatically across applications in the
NPB suite. For example, at 128 processors, the average

number of messages traversed in the posted receive queue
ranges from a low of approximately 1 to a high of 30. There
is also significant variability in the parameters within one
application — although the average number of posted re-
ceive queue elements traversed is 30, the max is over 100
(presumably, the minimum is 1). Most notable, however, is
the linear growth in both the maximum search length and
the average search length of these queues as the number of
processes increases.

The implications of this data for NIC-based MPI offload
are dramatic. For example, applications with long posted
receive queues will require NICs to provide much more
computing power than they currently have or will require
a change in the matching structures typically used by MPI.
Many consider such applications to be rare, but they repre-
sent a significant component of the NPB suite. Similarly,
unexpected messages (and the time they consume when
posting an MPI Recv) are clearly a factor that must be
dealt with for some applications. Finally, the results in this
paper illustrate the need for better microbenchmarks. These
microbenchmarks must provide clear insight into the im-
provements that network optimizations achieve while test-
ing the network under a usage model that occurs in applica-
tions.

8. Future Work

There are three logical successors to this analysis. The
first step is to extend this analysis to consider real appli-
cations. Obtaining, compiling, and running multi-language
applications with over 500,000 lines of code is a daunting
effort that is only justified in the light of this analysis. The
second step is to design readily accessible benchmarks that
test network parameters under more realistic workloads.
For example, latency should be tested with items in the
posted receive queue and bandwidth should be tested with
unexpected messages. The final step is to study the relative
performance (versus microbenchmarks) of modern cluster
interconnects under real usage models.

References

[1] R. Alverson. Red Storm. In Invited Talk, Hot Interconnects
10, August 2003.

[2] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart,
A. Woo, and M. Yarrow. The NAS parallel benchmarks 2.0.
Technical Report NAS-95-020, NASA, Dec. 1995.

[3] N. J. Boden, D. Cohen, R. E. F. A. E. Kulawik, C. L. Seitz,
J. N. Seizovic, and W.-K. Su. Myrinet: A gigabit-per-second
local area network. IEEE Micro, 15(1):29–36, Feb. 1995.

[4] R. Brightwell. Ready-mode receive: An optimized receive
function for MPI. In Recent Advances in Parallel Vir-
tual Machine and Message Passing Interface: 9th European
PVM/MPI Users’ Group Meeting, September 2002.

7

[5] R. Brightwell, W. Lawry, A. B. Maccabe, and R. Riesen.
Portals 3.0: Protocol building blocks for low overhead com-
munication. In Proceedings of the 2002 Workshop on Com-
munication Architecture for Clusters, April 2002.

[6] D. Buntinas and D. K. Panda. Nic-based reduction in
myrinet clusters: Is it beneficial? In Proceedings of the SAN-
02 Workshop (in conjunction with HPCA), February 2002.

[7] D. Buntinas, D. K. Panda, and P. Sadayappan. Fast NIC-
based barrier over Myrinet/GM. In Proceedings of the In-
ternational Parallel and Distributed Processing Symposium,
April 2001.

[8] Y. Coady, J. S. Ong, and M. J. Feeley. Using embedded net-
work processors to implement global memory management
in a workstation cluster. In Proceedings of The Eighth IEEE
International Symposium on High Performance Distributed
Computing, Redondo Beach, California, USA, Aug. 1999.

[9] R. F. V. der Wijngaart. NAS Parallel Benchmarks Version
2.4. Technical report, October 2002.

[10] R. Dimitrov, A. Skjellum, T. Jones, B. de Supinski,
R. Brightwell, C. Janssen, and M. Nochumson. PERUSE:
An MPI performance revealing extensions interface. Pre-
sented at the Sixth IBM System Scientific Computing User
Group, August 2002.

[11] M. Gries, C. Kulkarni, C. Sauer, and K. Keutzer. Exploring
trade-offs in performance and programmability of process-
ing element topologies for network processors. In Workship
on Network Processors (in conjunction with HPCA), Febru-
ary 2003.

[12] W. Gropp and E. Lusk. MPICH ADI Implementation Refer-
ence Manual. Mathematics and Computer Science Division,
Argonne National Laboratory, October 1994.

[13] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-
Performance, Portable Implementation of the MPI Message
Passing Interface Standard. Parallel Computing, 22(6):789–
828, September 1996.

[14] R. Gupta, P. Balaji, D. K. Panda, and J. Nieplocha. Effi-
cient collective operations using remote memory operations
on VIA-based clusters. In Proceedings of the International
Parallel and Distributed Processing Symposium, April 2003.

[15] C. Isert and K. Schwan. ACDS: Adapting Computa-
tional Data Streams for High Performance. In 14th In-
ternational Parallel and Distributed Processing Symposium
(IPDPS’00), April 2000.

[16] A. B. Maccabe, W. Zhu, J. Otto, and R. Riesen. Experi-
ence in offloading protocol processing to a programmable
NIC. In IEEE International Conference on Cluster Comput-
ing, September 2002.

[17] T. Mummert, C. Kosak, P. Steenkiste, and A. Fisher. Fine
grain parallel communication on general purpose LANs. In
Proceedings of 1996 International Conference on Super-
computing (ICS96), pages 341–349, Philadelphia, PA, USA,
May 1996.

[18] Myricom, Inc. Myrinet Express (MX): A high performance,
low-level, message-passing interface for Myrinet. http:
//www.myri.com/scs/MX/doc/mx.pdf, July 2003.

[19] F. Petrini, W. chun Feng, A. Hoisie, S. Coll, and E. Fracht-
enberg. The Quadrics network: High-performance cluster-
ing technology. IEEE Micro, 22(1):46–57, January/February
2002.

[20] F. Petrini, D. J. Kerbyson, and S. Pakin. The case of the
missing supercomputer performance: Identifying and elimi-
nating the performance variability on the ASCI Q machine.
In Proceedings of the 2003 Conference on High Perfor-
mance Networking and Computing, November 2003.

[21] S. K. Reinhardt, J. R. Larus, and D. A. Wood. Tempest and
Typhoon: User-level shared memory. In International Con-
ference on Computer Architecture, pages 260–267, Chicago,
Illinois, USA, Apr. 1994.

[22] M.-C. Roşu, K. Schwan, and R. Fujimoto. Supporting par-
allel applications on clusters of workstations: The intelli-
gent network interface approach. In Proceeding of the 6th
International Symposium on High Performance Distributed
Computing (HPDC 97), 1997.

[23] P. Shivam, P. Wyckoff, and D. Panda. EMP: Zero-copy OS-
bypass NIC-driven gigabit ethernet message passing. In Pro-
ceedings of the 2001 Conference on Supercomputing, Nov.
2001.

[24] P. Shivam, P. Wyckoff, and D. Panda. Can user-level proto-
cols take advantage of multi-CPU NICs? In Proceedings of
the International Parallel and Distributed Processing Sym-
posium, April 2002.

[25] S. Sumimoto, H. Tezuka, A. Hori, H. Harada, T. Takahashi,
and Y. Ishikawa. The design and evaluation of high per-
formance communication using a Gigabit Ethernet. In In-
ternational Conference on Supercomputing, pages 260–267,
Rhodes, Greece, June 1999.

[26] R. Thomas, B. Mark, T. Johnson, and J. Croall. High-
speed legitimacy-based DDoS packet filtering with network
processors: A case study and implementation on the intel
ixp1200. In Workship on Network Processors (in conjunc-
tion with HPCA), February 2003.

[27] V. Tipparaju, J. Nieplocha, and D. K. Panda. Fast collective
operations using shared and remote memory access proto-
cols on clusters. In Proceedings of the International Parallel
and Distributed Processing Symposium, April 2003.

[28] B. Tourancheau and R. Westrelin. Support for MPI at the
network interface level. In Recent Advances in Parallel Vir-
tual Machine and Message Passing Interface: 8th European
PVM/MPI Users’ Group Meeting, Santorini (Thera) Island,
Greece, Septermber 2001. Springer - Verlag.

[29] J. S. Vetter and F. Mueller. Communication characteristics
of large-scale scientific applications for contemporary clus-
ter architectures. In 16th International Parallel and Dis-
tributed Processing Symposium (IPDPS’02), pages 27–29,
April 2002.

[30] F. Wong, R. Martin, R. Arpaci-Dusseau, and D. E. Culler.
Architectural requirements and scalability of the NAS par-
allel benchmarks. In Proceedings of the SC99 Conference
on High Performance Networking and Computing, Novem-
ber 1999.

8

